首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3685篇
  免费   336篇
  国内免费   110篇
  2024年   4篇
  2023年   65篇
  2022年   56篇
  2021年   129篇
  2020年   180篇
  2019年   267篇
  2018年   208篇
  2017年   117篇
  2016年   117篇
  2015年   127篇
  2014年   225篇
  2013年   227篇
  2012年   119篇
  2011年   163篇
  2010年   144篇
  2009年   172篇
  2008年   181篇
  2007年   204篇
  2006年   168篇
  2005年   162篇
  2004年   147篇
  2003年   118篇
  2002年   106篇
  2001年   59篇
  2000年   49篇
  1999年   62篇
  1998年   44篇
  1997年   44篇
  1996年   33篇
  1995年   23篇
  1994年   24篇
  1993年   20篇
  1992年   26篇
  1991年   13篇
  1990年   20篇
  1989年   15篇
  1988年   15篇
  1987年   7篇
  1986年   15篇
  1985年   18篇
  1984年   47篇
  1983年   46篇
  1982年   47篇
  1981年   37篇
  1980年   32篇
  1979年   24篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有4131条查询结果,搜索用时 328 毫秒
131.
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.  相似文献   
132.
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.  相似文献   
133.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
134.
The ontogenetic structure and longitudinal variability of ichthyoplankton in a confluence zone of two river systems in the Eastern Amazon were evaluated between December 2018 and April 2019, at the time 137 eggs and 7,687 larvae of fish were captured. Ichthyoplankton proved to be heterogeneous between sections of rivers with differences in the number of taxa and abundance. The assemblages were distinguished by a NMDS Analysis, a ANOSIM, a SIMPER and a CCA, they presented a spatial zonation pattern with strong distinction and variability in the composition of the species between the river systems, under strong influence of limnological variables. The assemblages were mainly represented by larvae of Clupeiformes and Perciformes in the clear waters of the Tapajós river and Characiformes and Siluriforms in the cloudy waters of the Amazon river, influenced by the existence of a limnological gradient. Larvae in more advanced development stages were predominant in the Tapajós river while early stages were dominant in the Amazon river. The confluence zone does not seem to be a spawning area, but it is an important transport site for the larvae to reach the nursery areas in the lower stretch of the Amazon river. The encounter of these two river systems seems to guarantee the survival and biological recruitment of several fish species.  相似文献   
135.
136.
Long noncoding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of small nucleolar RNA host gene 16 (SNHG16) for regulating the cell cycle and epithelial to mesenchymal transition (EMT) remain elusive. In this study, SNHG16 expression profiles of HCC tissues or cell lines were compared with those of normal tissues or hepatocyte cell line. The effect of SNHG16 knockdown in HCC cell lines was investigated by using in vitro loss-of-function experiments and in vivo nude mouse experiments. The potential molecular regulatory mechanism of SNHG16 in HCC progression was investigated by using mechanistic experiments and rescue assays. The results revealed that SNHG16 was highly expressed in HCC tissues and cell lines, which predicted poor prognosis of HCC patients. On one hand, the downregulation of SNHG16 induced G2/M cell cycle arrest, inducing cell apoptosis and suppression of cell proliferation. On the other hand, it inhibited cell metastasis and EMT progression demonstrated by in vitro loss-of-function cell experiments. Besides, knockdown of SNHG16 increased the sensitivity of HCC cells to cisplatin. For the detailed mechanism, SNHG16 was demonstrated to act as a let-7b-5p sponge in HCC. SNHG16 facilitated the G2/M cell cycle transition by directly acting on the let-7b-5p/CDC25B/CDK1 axis, and promoted cell metastasis and EMT progression by regulating the let-7b-5p/HMGA2 axis in HCC. In addition, the mechanism of SNHG16 for regulating HCC cell proliferation and metastasis was further confirmed in vivo by mouse experiments. Furthermore, these results can provide new insights into HCC treatment and its molecular pathogenesis, which may enlighten the further research of the molecular pathogenesis of HCC.  相似文献   
137.
The neural cell adhesion molecule (NCAM) plays critical roles in multiple cellular processes in neural cells, mesenchymal stem cells, and various cancer cells. However, the effect and mechanism of NCAM in human melanoma cells are still unclear. In this study, we found that NCAM regulated the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells by determining the biological behavior of NCAM knockdown A375 and M102 human melanoma cells. Further studies revealed that NCAM knockdown impaired the organization of actin cytoskeleton and reduced the phosphorylation of cofilin, an actin-cleaving protein. When cells were transfected with cofilin S3A (dephosphorylated cofilin), biological behavior similar to that of NCAM knockdown cells was observed. Research on the underlying molecular mechanism showed that NCAM knockdown suppressed activation of the Src/Akt/mTOR pathway. Specific inhibitors of Src and PI3K/Akt were employed to further verify the relationship between Src/Akt/mTOR signaling and cofilin, and the results showed that the phosphorylation level of cofilin decreased following inhibition of the Src/Akt/mTOR pathway. These results indicated that NCAM may regulate the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells via the Src/Akt/mTOR/cofilin pathway-mediated dynamics of actin cytoskeleton.  相似文献   
138.
139.
Triple-negative breast cancer (TNBC) is associated with a high mortality rate, which is related to the insufficient number of appropriate biomarkers and targets. Therefore, there is an urgent need to discover appropriate biomarkers and targets for TNBC. SARNP (Hcc-1 and CIP29) is highly expressed in several cancers. It binds to UAP56, an RNA helicase component of the TREX complex in messenger RNA (mRNA) splicing and export. However, the role of SARNP in mRNA splicing and export and in the progression of breast cancer, especially of TNBC, remains unknown. Therefore, we examined the role of SARNP in mRNA splicing and export and progression of TNBC. We confirmed that SARNP binds to UAP56 and Aly and that SARNP overexpression enhances mRNA splicing, whereas its knockdown suppressed mRNA export. The SARNP overexpression induced the proliferation of MCF7 cells, whereas its knockdown induced E-cadherin expression and downregulated vimentin and N-cadherin expressions in SK-BR-3 and MDA-MB-231 cells. SARNP downregulates E-cadherin expression by interaction with pinin. Mice injected with MDA-MB-231shSARNP cells exhibited a significant reduction in tumor growth and lung metastasis compared with those injected with MDA-MB-231shCon cells in vivo. These findings suggested that SARNP is involved in mRNA splicing and export. SARNP maintains mesenchymal phenotype by escaping from inhibitory interaction with pinin leading to the downregulation of E-cadherin expression.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号